본문 바로가기

BITS

[Machine Learning by Stanford] Linear Algebra Review - Addition and scalar multiplication

This is a brief summary of ML course provided by Andrew Ng and Stanford in Coursera.

You can find the lecture video and additional materials in 

https://www.coursera.org/learn/machine-learning/home/welcome

 

Coursera | Online Courses From Top Universities. Join for Free

1000+ courses from schools like Stanford and Yale - no application required. Build career skills in data science, computer science, business, and more.

www.coursera.org

$\mathbf{X} = \left[\begin{array} {rrr} 1 & 0  \\ 2 & 5 \\ 3 & 1 \end{array}\right] $ + $ \left[\begin{array} {rrr} 4 & 0.5  \\ 2 & 5 \\ 0 & 1  \end{array}\right] $ = $\left[\begin{array} {rrr} 5 & 0.5  \\ 4 & 10 \\ 3 & 2  \end{array}\right] $

- you can only add matrices of the same dimension, and the result will be another matrix that's of the same dimension as the ones you just added.

 

$\mathbf{X} = \left[\begin{array} {rrr} 1 & 0  \\ 2 & 5 \\ 3 & 1 \end{array}\right] $ + $ \left[\begin{array} {rrr} 4 & 0.5  \\ 2 & 5  \end{array}\right] $ = Error

 

Quiz: What is 

$\left[\begin{array} {rrr} 8 & 6 & 9  \\ 10 & 1 & 10 \end{array}\right] $ + $ \left[\begin{array} {rrr} 3 & 10 & 2  \\ 6 & 1 & -1  \end{array}\right] $?

$\left[\begin{array} {rrr} 11 & 16 & 11  \\ 16 & 2 & 9 \end{array}\right] $

 

Scalar (Real number) Multiplication 

3 X $\left[\begin{array} {rrr} 1 & 0  \\ 2 & 5 \\ 3 & 1 \end{array}\right] $ = $\left[\begin{array} {rrr} 3 & 0  \\ 6 & 15 \\ 9 & 3 \end{array}\right] $ = $\left[\begin{array} {rrr} 1 & 0  \\ 2 & 5 \\ 3 & 1 \end{array}\right] $ X 3

$\left[\begin{array} {rrr} 4 & 0  \\ 6 & 3 \end{array}\right] $ / 4 = $\frac{1}{4}$ $\left[\begin{array} {rrr} 4 & 0  \\ 6 & 3 \end{array}\right] $  = $\left[\begin{array} {rrr} 1 & 0  \\ 1.5 & 0.75  \end{array}\right] $ 

 

Quiz: What is 2 X $\left[\begin{array} {rrr} 4 & 5  \\ 1 & 7  \end{array}\right] $?

$\left[\begin{array} {rrr} 8 & 10  \\ 2 & 14  \end{array}\right] $

 

Combination of Operands

3 X $\left[\begin{array} {rrr} 1 \\ 4 \\ 2 \end{array}\right] $ + $\left[\begin{array} {rrr} 0 \\ 0 \\ 5 \end{array}\right] $ - $\left[\begin{array} {rrr} 3 \\ 0 \\ 2 \end{array}\right] $ / 3 

$\left[\begin{array} {rrr} 3 \\ 12 \\ 6 \end{array}\right] $ $\left[\begin{array} {rrr} 0 \\ 0 \\ 5 \end{array}\right] $ $\left[\begin{array} {rrr} 1 \\ 0 \\ 0.66 \end{array}\right] $

$\left[\begin{array} {rrr} 2 \\ 12 \\ 10.33 \end{array}\right] $

 

Quiz: what is $\left[\begin{array} {rrr} 4 \\ 6 \\ 7 \end{array}\right] $ / 2 - 3 X $\left[\begin{array} {rrr} 2 \\ 1 \\ 0 \end{array}\right] $?

$\left[\begin{array} {rrr} -4 \\ 0 \\ 3.5 \end{array}\right] $ 

 

Lecturer's Note

Addition and subtraction are element-wise, so you simply add or subtract each corresponding element:

$\left[\begin{array} {rrr} a & b \\ c & d \end{array}\right] $ + $\left[\begin{array} {rrr} w & x \\ y & z \end{array}\right] $ = $\left[\begin{array} {rrr} a+w & b+x \\ c+y & d+z \end{array}\right] $

Subtracing matrics: 

$\left[\begin{array} {rrr} a & b \\ c & d \end{array}\right] $ - $\left[\begin{array} {rrr} w & x \\ y & z \end{array}\right] $ = $\left[\begin{array} {rrr} a-w & b-x \\ c-y & d-z \end{array}\right] $

To add or subtract two matrices, their dimensions must be the same.

 

In scalar multiplication, we simply multiply every element by the scalar value:

$\left[\begin{array} {rrr} a & b \\ c & d \end{array}\right] $ * x$\left[\begin{array} {rrr} ax & bx \\ cx & dx \end{array}\right] $

In scalar division, we simply divide every element by the scalar value:

$\left[\begin{array} {rrr} a & b \\ c & d \end{array}\right] $ * x$\left[\begin{array} {rrr} a/x & b/x \\ c/x & d/x \end{array}\right] $

 

Experiment below with the Octave/Matlab commands for matrix addition and scalar multiplication. Feel free to try out different commands. Try to write out your answers for each command before running the cell below.

% Initialize matrix A and B 
A = [1, 2, 4; 5, 3, 2]
B = [1, 3, 4; 1, 1, 1]

% Initialize constant s 
s = 2

% See how element-wise addition works
add_AB = A + B 

% See how element-wise subtraction works
sub_AB = A - B

% See how scalar multiplication works
mult_As = A * s

% Divide A by s
div_As = A / s

% What happens if we have a Matrix + scalar?
add_As = A + s